Edward Lance Lorilla |
- 【VISUAL VB.NET】Folder Option Search
- 【FLUTTER ANDROID STUDIO and IOS】Draw Graph
- 【VISUAL VB.NET】Screen Capture
- 【GAMEMAKER】Ship Mini Game
- 【PYTHON OPENCV】Face detection using OpenCV DNN face detector feeding several images to the network
- 【VUE JS】Checking out with payment request API
【VISUAL VB.NET】Folder Option Search Posted: 01 May 2021 03:38 AM PDT Public Class Form1 Dim fileArgs As String Dim path As String = "C:\Windows\System32\" Dim cmdProcess As Process = New Process() Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click fileArgs = "shell32.dll,Options_RunDLL 2" cmdProcess.StartInfo.Arguments = fileArgs cmdProcess.StartInfo.WorkingDirectory = path cmdProcess.StartInfo.FileName = "RunDll32.exe" cmdProcess.Start() cmdProcess.WaitForExit() Me.Show() End SubEnd Class |
【FLUTTER ANDROID STUDIO and IOS】Draw Graph Posted: 01 May 2021 02:12 AM PDT import 'package:draw_graph/draw_graph.dart'; import 'package:draw_graph/models/feature.dart'; import 'package:flutter/material.dart'; |
Posted: 30 Apr 2021 07:22 PM PDT ' make sure that using System.IO; is included Imports System.IO' make sure that using System.Drawing.Imaging; is included Imports System.Drawing.ImagingPublic Class Form1 Private tempfile As String = "C:\\Users\\Lorilla Family\\temp.jpg" Private Sub ScreanCapture() If Directory.Exists(Path.GetDirectoryName(tempfile)) Then pictureBox1.Image = Nothing File.Delete(tempfile) End If Dim bounds As Rectangle = Me.Bounds Using bitmap As New Bitmap(bounds.Width, bounds.Height) Using g As Graphics = Graphics.FromImage(bitmap) g.CopyFromScreen(New Point(bounds.Left, bounds.Top), Point.Empty, bounds.Size) End Using bitmap.Save(tempfile, ImageFormat.Jpeg) End Using End Sub Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load End Sub Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click ScreanCapture() Dim fs As New FileStream(tempfile, FileMode.Open) ' pictureBox1.Image = new Bitmap(tempfile); PictureBox1.Image = New Bitmap(fs) fs.Close() End SubEnd Class |
Posted: 30 Apr 2021 08:18 AM PDT Information about object: obj_bubble Sprite: spr_bubble Solid: false Visible: true Depth: 0 Persistent: false Parent: Children: Mask: No Physics Object Step Event: execute code: Information about object: obj_beam_1 |
【PYTHON OPENCV】Face detection using OpenCV DNN face detector feeding several images to the network Posted: 30 Apr 2021 08:13 AM PDT """ Face detection using OpenCV DNN face detector when feeding several images to the network """ # Import required packages:import cv2import numpy as npfrom matplotlib import pyplot as plt def show_img_with_matplotlib(color_img, title, pos): """Shows an image using matplotlib capabilities""" img_RGB = color_img[:, :, ::-1] ax = plt.subplot(2, 2, pos) plt.imshow(img_RGB) plt.title(title) plt.axis('off') # Load pre-trained model:net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000_fp16.caffemodel") # Load images and get the list of images:image = cv2.imread("face_test.png")image2 = cv2.imread("face_test2.jpg")images = [image.copy(), image2.copy()] # Call cv2.dnn.blobFromImages():blob_images = cv2.dnn.blobFromImages(images, 1.0, (300, 300), [104., 117., 123.], False, False) # Set the blob as input and obtain the detections:net.setInput(blob_images)detections = net.forward() # Iterate over all detections:# We have to check the first element of each detection to know which image it belongs to:for i in range(0, detections.shape[2]): # First, we have to get the image the detection belongs to: img_id = int(detections[0, 0, i, 0]) # Get the confidence of this prediction: confidence = detections[0, 0, i, 2] # Filter out weak predictions: if confidence > 0.25: # Get the size of the current image: (h, w) = images[img_id].shape[:2] # Get the (x,y) coordinates of the detection: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # Draw bounding box and probability: text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(images[img_id], (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(images[img_id], text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # Create the dimensions of the figure and set title:fig = plt.figure(figsize=(16, 8))plt.suptitle("OpenCV DNN face detector when feeding several images", fontsize=14, fontweight='bold')fig.patch.set_facecolor('silver') # Show the input and the output images with the detections:show_img_with_matplotlib(image, "input img 1", 1)show_img_with_matplotlib(image2, "input img 2", 2)show_img_with_matplotlib(images[0], "output img 1", 3)show_img_with_matplotlib(images[1], "output img 2", 4) # Show the Figure:plt.show() |
【VUE JS】Checking out with payment request API Posted: 30 Apr 2021 08:09 AM PDT |
You are subscribed to email updates from Edward Lance Lorilla. To stop receiving these emails, you may unsubscribe now. | Email delivery powered by Google |
Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, United States |
No comments:
Post a Comment